ANÁLISIS DE LA INUNDABILIDAD DE NAVALUENGA
(ÁVILA, CASTILLA Y LEÓN)

A. DÍEZ HERRERO
Dpto. de Medio Ambiente, Fac. de Ciencias, U. Europea de Madrid,
28.670 Villaviciosa de Odón, Madrid.

M.A. SANZ SANTOS
Aula de Informática, Facultad de CC. Geológicas, U. Complutense,
Ciudad Universitaria, 28.040 Madrid.

Resumen:
Se ha realizado un estudio de la inundabilidad en Navaluenga (Cuenca del Tajo, provincia de Ávila), para analizar dos fenómenos diferentes: la precipitación con acumulación «in situ» y el desbordamiento durante crecidas fluviales. En el primer caso, las zonas inundables se delimitaron mediante un análisis de la intensidad y distribución de la precipitación empleando métodos paramétricos, con un modelo estadístico combinación de la función SQRT-ET_{max} y un estimador de Máxima Verosimilitud, sobre datos locales de la serie anual de precipitaciones máximas en 24 horas; los cantiles resultantes se aplicaron a las áreas llanas y/o endorreicas obtenidas a partir de un estudio de la naturaleza y disposición del suelo, realizado mediante un modelo digital del terreno a escala 1:1000. En cuanto a la estimación de los caudales de crecida capaces de producir inundación por desbordamiento para el río Alberche y el arroyo Chorrerón, se ha seguido una minuciosa calibración del cálculo hidrometeorológico (combinación del método racional modificado e hidrograma unitario soportado por un SIG) con el análisis estadístico de caudales de aforo. La restricción de caudales a alturas de lámina de agua se realiza mediante un modelo hidráulico para un tramo de 1250 m de río, suponiendo un flujo gradualmente variado en régimen estacionario, y ayudados por los paquetes informáticos HEC-2 y HECRAS; la delimitación de áreas inundables se realiza con un SIG, cruzando los modelos digitales de elevación de la lámina de agua con el modelo digital del terreno elaborado para las márgenes (ambos de precisión centimétrica), permitiendo igualmente obtener mapas de isobatas durante la crecida para diferentes períodos de retorno. Todo ello contrastado con información geomorfológica de detalle.

Palabras clave:
Peligrosidad, inundaciones, río Alberche, Navaluenga.

Abstract:
Flood Hazard Analysis of Navaluenga (Ávila, Castilla y León). A study of flood hazard was made at the village of Navaluenga (Tagus Basin, Central Spain), in order to analyze two different phenomena: the rainfall with «in situ» accumulation, and the overflowing during river floods. At the first one, the floodable areas were delimited using the analysis of precipitation intensity and distribution, made by parametric methods, such as the statistical model which combines the SQRT-ET_{max} function of frequency distribution with the estimator of Maximum Likelihood, over the local data of the annual series of maxima precipitations in 24 hours. The resultant values were applied to flat and endorric areas, obtained from the study of the ground nature and disposition; the last one was made from a slope map automatically calculated starting from a Digital Terrain Model (escale 1:1.000) that uses the ILWIS GIS program (ITC, Netherlands). As for the estimation of flood discharges which could produce the overflowing of the Alberche and/or Chorrerón rivers, a meticulous computer calibration of both, hydrometeorological calculations -com-
bination of the unitary hydrograph and rational methods- and statistical analysis of the measured discharges -parametric techniques for GEV type models- was followed. The restitution of the discharges to water levels was made by a hydraulic model for a 1,250 m-long section, supposing a gradually varied flow in stationary regime, and it was helped by the HEC-2 and HEC-RAS computer modelling programs (HEC, USA). The delimitation of the floodable areas was achieved through the ILWIS GIS program, by crossing the elevation digital model of the watertable, and the one for the river floodplain (both with centimetre precision); besides, it allows us to obtain bathimetrical maps for the situation during the simulated flood events on different return periods. All of them contrasted with geomorphological information.

Key words:
Hazard, floods, Alberche River, Central Spain.

1. INTRODUCCIÓN

Según se hace constar en el apartado 1.3 de la Directriz Básica de Planificación de Protección Civil (M.J.L., 1995), una inundación consiste en la sumersión temporal bajo lámina de agua de terrenos normalmente secos, como consecuencia de una precipitación «in situ», una avenida o crecida, o la inadecuada gestión de obras hidráulicas. Cuando una zona es susceptible de ser inundada se dice que tiene asociada una peligrosidad o, en este caso, un factor de inundabilidad; probabilidad temporal de ocurrencia del fenómeno; ésta suele expresarse mediante el período estadístico de retorno (T, en años), inverso de la probabilidad de que en un año se presente una inundación superior a un valor dado.

El objetivo de este estudio es la caracterización de las áreas inundables para diferentes períodos de retorno en el núcleo urbano de Navaluenga (Ávila, Castilla y León); de forma paralela se analizarán las áreas de riesgo y se catalogarán los elementos en riesgo asignándoles un valor de vulnerabilidad. Todo ello de acuerdo a los parámetros reflejados en la Directriz Básica de Planificación de Protección Civil ante el Riesgo de Inundaciones, con objeto de que los resultados puedan ser integrados en un futuro Plan de Actuación de Ámbito Local para el municipio de Navaluenga.

2. SITUACIÓN DEL MUNICIPIO DE NAVALUENGA

El municipio de Navaluenga está situado en sector centro-occidental de la Península Ibérica, inmerso en la alineación orográfica que constituye el Sistema Central español en su sector gredense oriental (Sierra del Valle); integrado en el Valle del Alberche, drena sus aguas hacia el río Tajo.

Desde el punto de vista geológico se incluye dentro de la Zona Centroibérica o Galaico-Castellana del Macizo Hespérico, caracterizada en el sector de Gredos por la presencia mayoritaria de formaciones plutónicas hercínicas sin- y tardicinémáticas (Carbonífero Superior). En concreto, la mayor parte del término municipal está ocupada por granitoides de tipo monozonomáfico de dos micas y grano medio-grueso, localmente porfídicos; en algunos puntos adoptan composiciones granodioríticas a cuarzomonzoníticas, con aflora-mientos en la Sierra del Valle de granodioritas moscovíticas. Sobre estos materiales del sustrato existen formaciones superficiales de edad cuaternaria constituidas por aglomerados, gravas, arenas y limos que cubren las laderas (coluviones), fondos de valles (aluviones) y depresiones tipo nava.

El clima es de tipo mediterráneo templado a templado fresco con temperatura media variable de 8 a 16 ºC y precipitación media anual entre 400 y 1400 mm; ésta se distribuye estacionalmente: 32% en invierno, 28% en primavera y 31% en otoño.

Administrativamente se encuentra integrado en la provincia de Ávila, Comunidad Autónoma de Castilla y León, con una extensión de 7400 ha (0,89 % provincial). Consta como municipio independiente a par-
tir de 1837 (desamortización de Mendizabat), aunque ya aparece citado en un libro de montería del siglo XIV. Con un censo cercano a los 2000 habitantes, presenta una importante población flotante, que durante los fines de semana y períodos estivales llega a multiplicar por diez el número de habitantes.

Su principal núcleo de población, objeto de este estudio y que da nombre al municipio, está ubicado a una distancia de 43 km de Ávila y 100 km de Madrid, comunicado mediante las carreteras C-500 y AV-902. Su casco antiguo es una aglomeración de manzanas cerradas, con forma subcircular ligeramente elongada norte-sur y una extensión de 32 ha; situado en la margen izquierda del río Alberche aprovecha el interfluvio de su confluencia con el arroyo del Chorrerón. En la actualidad, el núcleo de población de Navaluenga integra además otra serie barrios independientes a ambos lados del río, con una extensión de 70 ha y viviendas de tipología unifamiliar. Entre su patrimonio edificado destaca: el puente románico (Puente Viejo), la iglesia de Nª Sª de los Villares (renacentista) y la ermita de San Isidro.

3. PLANTEAMIENTO DE LA PROBLEMÁTICA: ANTECEDENTES

El término municipal de Navaluenga, y más en concreto su principal núcleo de población, ha sufrido los efectos de inundaciones históricas debidas fundamentalmente al desbordamiento durante crecidas de las dos principales corrientes que lo bordean: el río Alberche y el arroyo Chorrerón.

Aunque ninguna de estas inundaciones ha revestido consecuencias catastróficas sobre la población o los bienes ubicados en las márgenes fluviales, si llama la atención y forma parte del saber popular, la alta frecuencia con la que se producen eventos de este tipo. Esta frecuencia, unida a un aumento progresivo de la vulnerabilidad de los elementos en riesgo por el rápido y desordenado crecimiento que está experimentando Navaluenga, hacían recomendable un análisis de riesgos de inundación susceptible de ser integrado en el planeamiento municipal en desarrollo. Más aún tras los daños ocasionados en distintos edificios por las inundaciones acontecidas en enero y diciembre del año 1996, que generaron un gran malestar e inquietud entre los vecinos residentes en las proximidades del río Alberche y arroyo Chorrerón.

4. INUNDABILIDAD DEL CASCO URBANO DE NAVALUENGA

Existen cuatro grandes grupos de fenómenos capaces de producir inundación por lámina de agua en medios continentales: eventos de precipitación y acumulación «in situ» (fase de encharcamiento); desbordamiento de corrientes fluviales durante crecidas (fase de escorrentía canalizada); elevación la superficie freática sobre el nivel del terreno; e inundaciones inducidas antrópicamente. De ellos, únicamente los dos primeros son susceptibles de producirse en el entorno del núcleo urbano de Navaluenga, ya que no existen
obras hidráulicas significativas aguas arriba en el río Alberche, ni la configuración del subsuelo de la localidad permite la existencia de acuíferos libres subsuperficiales dignos de ser tenidos en consideración.

En el análisis de la inundabilidad por precipitación y acumulación "in situ" intervienen dos factores: la intensidad y forma de las precipitaciones para diferentes períodos de retorno, y la naturaleza y disposición del terreno.

La evaluación de la peligrosidad por inundación en las riberas durante crecidas requiere dos análisis previos: un estudio de las avenidas en ese punto, con la estimación de los caudales esperados para diferentes períodos de retorno; y la aplicación de un modelo hidráulico para la circulación de dichos caudales a través del cauce, que nos permita evaluar qué áreas quedarán sumergidas bajo diferentes condiciones de contorno.

4.1. Inundabilidad por precipitación y acumulación in situ

Análisis de la intensidad y distribución de la precipitación

Partiendo de los datos de precipitaciones máximas en 24 horas procedentes de las estaciones meteorológicas gestionadas por el I.N.M., se realizó un análisis estadístico de la serie anual con objeto de obtener la intensidad de precipitación para diferentes períodos de retorno.

La única estación pluviométrica ubicada en el término municipal de Navaluenga es Trampalones C.F. (03323), si bien su situación en la falda septentrional de la sierra del Valle hace recomendable utilizar los datos de la estación de Burgohondo (03323E), más representativa de la ubicación del casco urbano de Navaluenga. Los 41 datos anuales útiles fueron ajustados a una función de distribución de tipo SQRT-ET_{max} con cálculo de parámetros y cuantiles mediante un estimator de Máxima Verosimilitud; la fiabilidad de este modelo estadístico en el análisis de precipitaciones máximas ya fue puesta de manifiesto por Ferrer y Arévalo (1994). Las precipitaciones máximas resultantes para períodos de retorno de 50, 100 y 500 años, fueron de 127, 147 y 194 mm respectivamente.

Temporalmente, las precipitaciones máximas se sitúan entre los meses de septiembre y marzo, con tres máximos muy marcados en noviembre, diciembre y febrero que concentran el 58 % de los eventos. En general corresponden a situaciones sinópticas con flujos del oeste o noroeste que llevan aparejados frentes atlánticos con precipitaciones prolongadas durante varios días; de forma aislada se producen episodios tormentosos asociados a fenómenos convectivos otoñales o al reforzamiento del efecto orográfico producido por la cercanía de la sierra del Valle.

Naturaleza y disposición del terreno

Para que el agua precipitada forme encharcamientos en superficie es necesaria la confluencia simultánea de dos fenómenos: la cantidad de precipitación supera la capacidad de infiltración del sustrato y las tasas de evapotranspiración; y la disposición del terreno restringe la escorrentía superficial, bien por tratarse de áreas endorreicas (circundadas por zonas más elevadas) o bien porque la pendiente es casi nula en una extensión considerable.

Respecto al primero de los aspectos, se ha supuesto que en las extensiones edificadas, asfaltadas o adoquinadas la capacidad de infiltración es mínima; las zonas ocupadas por jardines, huertos o espacios naturales tienen asignada la correspondiente a su umbral de escorrentía calculado por la metodología del S.C.S. (1972). En general se considera que la magnitud de la evapotranspiración instantánea en estos eventos es despreciable, más aún teniendo en cuenta la temperatura ambiental en los meses donde se concentran las máximas precipitaciones.

Para la localización de áreas endorreicas y zonas llanas se elaboró un modelo digital de elevación mediante la digitalización e interpolación en un sistema de información geográfica, del plano parcelario a escala
la 1:1.000 del casco urbano, y completado de las isohipsas con cotas singulares del plano 1:500. El modelo raster resultante, con un pixel de 1 m y precisión altitudinal centimétrica, fue filtrado bidireccionalmente para obtener un mapa de pendientes del casco urbano y su entorno.

Puede afirmarse que no existen áreas endorreícas de dimensiones considerables en el interior del casco urbano, aunque sí en su entorno no edificado (navas); en general todas las calles y espacios abiertos drenan libremente hacia el río Alberche o el arroyo Chorrerón. Las zonas llanas de extensión amplia quedan restringidas al cauce del río Alberche y puntos aislados dentro del casco urbano (calles Tenería y Riacho; Figura 1). En éstos últimos habrá que considerar, caso de no existir un sistema de saneamiento adecuado (red de alcantarillado o drenaje artificial) o éste encontrarse saturado por sobre elevación, la presencia de un factor de inundabilidad.

En resumen, existen pequeñas áreas dentro del núcleo urbano donde la escasa o nula pendiente del terreno y la impermeabilidad del sustrato las hace potencialmente inundables en eventos de precipitaciones intensas. El espesor de lámina de agua, en la situación más desfavorable, alcanzará en estas zonas valores de 1.27, 1.47 y 1.94 m, para períodos de retorno de 50, 100 y 500 años.

4.2. Inundabilidad por desbordamiento durante crecidas

Estudio de los caudales de crecida

Las crecidas o avenidas son episodios temporales con caudales anormalmente altos que, periódica o excepcionalmente, registra un punto o tramo de una corriente fluvial (Pedraza y Díez, 1996). Para la evalua-
ción hidrológica de su magnitud y frecuencia existen tres grandes grupos de metodologías: fórmulas empíricas, cálculos hidrometeorológicos y análisis estadísticos de caudales.

En situaciones idóneas, con registros suficientemente extensos y representativos, el análisis estadístico de caudales es un método válido y ampliamente difundido. Existe una estación de aforos sobre el río Alberche en el propio municipio de Navaluenga (estación 231 de la C.H. del Tajo), pero su registro de caudales se limita al período 1973/74 a 1991/92, con unas series anuales de caudales máximos diarios (Qₙ) e instantáneos (Qᵢ) de 13 y 3 datos respectivamente, que no se consideran unas muestras estadísticamente representativas.

Es por ello que se debe recurrir a los cálculos hidrometeorológicos para estimar los caudales circulantes por el río Alberche y el arroyo del Chorrerón en diferentes períodos de retorno. Retomando el modelo hidrometeorológico semidistribuido por subcuenca elaborado por el método del hidrograma unitario de Sherman para la subcuenca de El Burguillo (Díez y Pedraza, 1997a), se han calculado los cuantiles correspondientes al paso del río Alberche por Navaluenga y a la subcuenca del arroyo Chorrerón (Tabla 1). Para ello se utilizó un factor de humedad inicial como multiplicador del umbral de escorrentía del S.C.S. obtenido a partir de la calibración empírica, y ajustado según los períodos de retorno a considerar, de acuerdo con la propuesta metodológica de Díez y Pedraza (1997b).

<table>
<thead>
<tr>
<th>Período de retorno (años)</th>
<th>Río Alberche en Navaluenga</th>
<th>Cuenca del arroyo Chorrerón</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medio (m³/s)</td>
<td>Punta (m³/s)</td>
</tr>
<tr>
<td>50</td>
<td>716,64</td>
<td>2172,57</td>
</tr>
<tr>
<td>100</td>
<td>800,69</td>
<td>2461,92</td>
</tr>
<tr>
<td>500</td>
<td>979,17</td>
<td>3181,87</td>
</tr>
</tbody>
</table>

Tabla 1. Caudales correspondientes al río Alberche y arroyo del Chorrerón a su paso por Navaluenga para períodos de retorno de 50, 100 y 500 años.

Modelo hidráulico del cauce

En la estimación de las alturas de lámina de agua alcanzadas por los diferentes caudales a su paso por el casco urbano de Navaluenga se ha utilizado un modelo para flujo gradualmente variado en régimen estacionario. El procedimiento de cálculo está basado en la solución unidimensional de la ecuación de la energía y la evaluación de la pérdida de energía debido a la fricción con la ecuación de Manning. Para ello se utilizaron los programas informáticos HEC-2 y HECRAS del Hydrologic Engineering Center (HEC, 1976 y 1996).

Este modelo reproduce un sector del cauce del río Alberche y áreas aledañas de unos 1240 m de longitud por unos 420 m de amplitud. La geometría del canal se reproduce mediante 16 perfiles topográficos transversales al flujo de unos 300 m de longitud, situados en puntos característicos: cambios en la morfología del cauce, puentes, vertederos, etc. Como condiciones hidráulicas de contorno del modelo se introdujeron:

- Régimen de flujo: al desconocerse de antemano las condiciones de flujo, se empieza por un cálculo en régimen lento y posteriormente se estiman niveles en régimen rápido. De la comparación entre ambos se obtiene el perfil real de la lámina de agua.
- Altura inicial: se utilizará una pendiente de energía equivalente a la del lecho del canal en ese tramo, o sea, 0,006. Las alturas iniciales estimadas a partir de pasadas con calado crítico son 756 m para régimen lento y 762,01 m para régimen rápido.
- Caudal: se introdujeron los correspondientes a los cuantiles calculados para el río Alberche (ver Tabla 1), considerando irrelevantes las aportaciones del arroyo Chorrerón.
— Coeficientes de pérdidas de energía; los valores de n de Manning se obtuvieron del estudio de las características texturales de los sectores, estimándose como media 0.05 para las márgenes y 0.02 para el canal. Los coeficientes de contracción y expansión utilizados fueron de 0.1-0.3 para transiciones normales y de 0.3-0.5 para cambios bruscos de la geometría.

Con objeto de calibrar el modelo hidráulico previamente a su validación y simulación, se utilizó un evento de crecida bien caracterizado en Navaluenga y que puede considerarse suficientemente representativo. El día 16 de diciembre de 1989, la estación de aforos de Navaluenga registró un caudal medio diario de 552.4 m³/s, y la población sufrió importantes inundaciones que afectaron a varias edificaciones. La existencia de abundantes testimonios orales y audiovisuales del evento facilitó la estimación de las cotas reales de lámina de agua alcanzadas en algunas de las secciones; esos valores sirvieron para calibrar el resto de las condiciones de contorno, fundamentalmente el régimen de flujo y los coeficientes de pérdidas de energía. De manera semejante se procedió con la validación del modelo utilizando los datos de la curva de gastos en la estación de aforos, donde se ubicó una de las secciones transversales.

Como resultado de la aplicación del modelo hidráulico a los caudales correspondientes a los distintos períodos de retorno se obtienen diferentes alturas para cada una de las 16 secciones estudiadas. Para la interpolación de los valores de altura de la lámina entre las secciones se realizó un modelo digital de elevación utilizando un sistema de información geográfica IHWIS (ITC, 1993) con un factor de escala que permitía obtener precisión centimétrica. De semejante manera se procedió con los caudales punta correspondientes a los distintos períodos de retorno.

5. INFORMACIÓN GEOMORFOLÓGICA Y PALEOHIDROLÓGICA

Además de la información hidrológica, existen datos de diferente índole que nos ayudan a precisar el alcance y magnitud de los eventos de crecida del río Alberche a su paso por Navaluenga. Estos datos, aparte de contrastar los resultados del análisis hidrológico de las crecidas, permiten prolongar el registro de eventos y de sus consecuencias más allá de las series ordinarias de caudales o precipitaciones recogidas en las estaciones; con ello, no se desprecia una información que, si bien normalmente es de tipo cualitativo, puede aportarnos importantes conclusiones de carácter evolutivo.

Un primer grupo de criterios de caracterización de las crecidas parten de la configuración geomorfológica del cauce y los elementos que lo integran, en el contexto evolutivo de esa red de drenaje. El río Alberche a su paso por Navaluenga discurre por la parte más baja de una depresión tectónica (fosa del Alto Alberche; Vázquez, 1986) con configuración de graben asimétrico basculado hacia el sur, y flanqueado por los horsts de La Paramera y la sierra del Valle. De ahí que las laderas del valle del Alberche en este sector presenten una notable disimetría: la margen izquierda (vertiente norte) se configura como una sucesión de superficies escalonadas ligeramente basculadas hacia el sur; mientras que la ladera meridional presenta escarpadas pendientes en la que se localizan pequeños replanos a modo de hombreadas de origen tectónico.

Esta configuración geomorfológica condiciona sobremano la disposición del cauce del río Alberche, que procedente de estrechas gargantas (consecuencia de la incisión lineal en los replanos escalonados), va ampliando su desarrollo en las proximidades de Navaluenga al aprovechar los amplios glaci erosivos del fondo de la depresión y las zonas de meteorización del sustrato granítico. En este sector el cauce puede delimitarse una planicie ligeramente alomada cuyo fondo está ocupado por depósitos detriticos y que está separada de las márgenes (trazas erosivas) por sendos taludes de apenas tres metros de altura.

El río Alberche es una corriente fluvial rectilínea con bajo índice de sinuosidad y elevada torrencialidad por su alta pendiente longitudinal. Su canal en este sector es sencillo y con trazado ligeramente quebrado debido al control ejercido por las áreas de intensa meteorización del sustrato que a su vez siguen antiguas fracturas tardihercénicas. El arroyo del Chorrerón es igualmente rectilíneo y su trazado lineal está controlado por un sistema de fracturas tardihercénicas de dirección N-NE que generan un corredor de meteorización...
del sustrato donde se ha instalado un valle del tipo nava, con perfil en artesa. Ello ocasiona que durante eventos de crecida el arroyo ocupe la mayor parte del fondo del valle con una lámina de escaso espesor.

Precisamente en las proximidades de Navauluenga, donde la mayor anchura del cauce del río Alberche permite la divagación del canal, existen barras laterales y longitudinal de cantos, gravas y arenas, llegando incluso a constituir islas permanentes vegetadas que separan varios canales. La de mayor extensión («La Isla») presenta una compleja evolución que se puede sintetizar en una tendencia del canal septentrional a migrar hacia el suroeste, dejando brazos abandonados a lo largo de la llanura. Estos canales abandonados constituyen vías preferenciales de circulación de la escorrentía en eventos de crecida (como lo prueban los depósitos de alta energía existentes en su lecho), por lo que su funcionalidad es inversamente proporcional al tiempo transcurrido desde su abandono.

Otro hecho geomorfológico de interés en el estudio de crecidas y riesgos asociados es la tendencia evolutiva del canal del río Alberche a desplazarse hacia su margen derecha (sur), provocando la asimetría de las taludes del cauce y el desplazamiento preferente de la vía de intensa desagüe (flooding) hacia el margen meridional; mientras, el sector septentrional del cauce sufre inundación con menor velocidad (fringe), únicamente rápida a través de los canales abandonados. De igual modo, el encajeamiento del canal en el cauce ha hecho aflorar pequeños relieves domóticos aislados, que en algunos sectores (El Berrocal) llegan al constreñir el cauce y provocar el paso a flujo rápido durante periodos de crecida.

No existe ningún estudio de caracterización y datación de depósitos originados en aguas altas (SWD) cerca de Navauluenga, fundamentalmente porque los situados en el cauce han sido sucesivamente reenterrados, y los de los márgenes están antrópicamente modificados. Sin embargo sí que existen criterios biológicos que apoyan la existencia de paleoinundaciones, como la presencia de ecos de crecimiento en antiguos árboles situados en las riberas a una cota característica.

Por lo que respecta a las inundaciones históricas, tampoco existe demasiada documentación recopilada al tratarse de un pequeño municipio, muy alejado y mal comunicado con los principales centros urbanos del pasado (ver apartado 3). Ninguna de ellas proporciona datos significativos susceptibles de ser convertidos en aforos circulantes en Navauluenga e integrados en el análisis estadístico de caudales.

6. ZONACIÓN TERRITORIAL DE ÁREAS INUNDABLES

Partiendo del plano parcelario a escala 1:1000 elaborado en 1983 por el Servicio de Valoración Urbana (Ministerio de Hacienda) se ha confeccionado un modelo digital de elevación del casco urbano de Navauluenga. Para ello se digitalizaron las isobispas (con una equidistancia de 1 m) y se completó el mapa vector con las cotas singulares procedentes de los planos parcelarios a escala 1:500; posteriormente se rasterizó la información con un pixel de 1 m y se interpolaron las cotas con un factor de escala que permitía una precisión centimétrica.

Cruzando en un sistema de información geográfica (ILWIS; ITC, 1993) los modelos digitales de elevación correspondientes a la lámina de agua para distintos caudales y a la configuración superficial del terreno, se obtienen las áreas inundables para los diferentes periodos de retorno considerados (Figura 2). Como puede observarse, las superficies inundadas por las crecidas de T50 y T100 son bastante semejantes, mientras que la crecida de T50 aumenta considerablemente el área anegada. Las zonas comprendidas entre las líneas que delimitan estas superficies serán, de acuerdo a los criterios de la Directriz, de inundación frecuente, ocasional y excepcional, respectivamente.

Aparte de esta información, la utilización del S.I.G. en el procesoado de la información permite obtener otras cartografías de sumo interés, como es un mapa de isopropundidades de lámina de agua durante la inundación (Figura 3); para ello basta con restar ambos modelos digitales de elevación y revectorizar la información del resultado, pudiéndose obtener mapas con diferentes equidistancias (de métrica a centímétrica).
Fig. 2. Mapa de áreas inundables del casco urbano de Navaluenga por desbordamiento durante crecidas, para diferentes periodos de retorno (50, 100 y 500 años); corresponden a las áreas de inundación frecuente, ocasional y excepcional de la Directriz Básica (M.J.I., 1995).

Fig. 3. Mapa de isoprofundidades de lámina de agua (isobatas) durante la crecida con periodo de retorno de 30 años; equidistancia, 1 m.
AGRADECIMIENTOS

Este estudio se enmarca en la Tesis Doctoral que el primer autor está realizando sobre geomorfología y procesos actuales en la cuenca del río Alberche, bajo la dirección del Dr. Javier de Pedraza. Los autores quisieran agradecer su colaboración a las siguientes personas y entidades: Sra. Clara (Bar la Laguna), Institución Gran Duque de Alba, Ayuntamiento de Navaluenga, Confederación Hidrográfica del Tajo (Aforos), Unión Fenosa (Dirección de Movimiento de Energía), ITGE (Servicio de Riesgos Naturales), Manuel Meléndez (CEDEX), Bar los Álamos, Centro de Gestión Urbana y Catastral (Ávila), Protección Civil de Ávila, Universidad SEK de Segovia y José Francisco Martín. Agradecimiento que hacemos extensivo a todos los vecinos de Navaluenga, quienes siempre nos han acogido con amabilidad y han contestado prestos a nuestras extrañas preguntas; y finalmente a Alejandro Gaona y Alberto Díez, por las inolvidables experiencias vividas bajo la lluvia durante las inundaciones de 1996.

BIBLIOGRAFÍA

